

-3 cos (x-pi/4)
Amplitude -3 so it is flipped upside down and 3 tall
then phase shift pi/4 to the right
4 sin(pi/2*x-pi/2)-1
Notice this has a phase shift of -pi/2 so it moves right
Frequency is pi/2 so the period is 2 pi divided by pi/2 (6.28/1.57)
Frequency is 4.
If you look at the graph you can see that one cycle completes at 4.
Prove the identites:
2tanx/1+tan squaredx=sin2x
2tanx/sec^2 x
2 tanx * cos^2 x
2 (sinx/cosx) *cos^2 x
2 sinx * cosx
sin2x
Cotx+tanx=2csc2x
cosx/sinx + sinx/cosx
cosxcosx/sinxcosx + sinxsinx/sinxcosx
(cos^2 x +sin^2 x)/(sinxcosx)
1/sinxcosx (since 2sinxcosx= sin2x then sinxcosx = (1/2) sin(2x) )
2/sin(2x)
2csc(2x)
Solve for x
sin squaredx - cos squaredx=1/2
-cos^2 x + sin^2 x = 1/2 Use double angle formula
2cos^2 x-1= -1/2
2cos^2 x= 1/2
cos^2 x = 1/4
cos x = +or- 1/2
x = 2.09 or 1.05
2 sin squaredx - 3 cos squaredx=3
No comments:
Post a Comment